疗效导向下中医辨证论治数字化研究信息框架的构建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2019YFC1710400,2019YFC1710401);国家自然科学基金青年科学基金项目(82204942);中国博士后科学基金面上资助项目(2022M721998);山东省自然科学基金青年项目(ZR2022QH123);山东省泰山学者工程项目(tsqn202408383)


Construction of Information Framework of Digital Research on Syndrome Differentiation and Treatment of Traditional Chinese Medicine Under the Guidance of Curative Effect
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    辨证论治是中医的精髓与核心,实现其数字化是中医药现代化研究的重要方向。辨证论治的主观性、个体化特点影响了四诊和辨证信息的规范性、可靠性,制约中医借助数字化手段提升诊疗能力。以客观方法采集四诊信息,以疗效评价验证辨证信息,是实现信息规范性、可靠性的重要途径。由于辨证论治的复杂性,通过遴选体现中医辨证论治优势的示范性疾病,优选人工智能易于辨识的特异性证候,以构建中医辨证论治数字化研究信息框架。

    Abstract:

    Syndrome differentiation and treatment is the essence and core of traditional Chinese medicine(TCM),and digitalizing this process is a crucial direction for the modernization of TCM research.The subjectivity and individualized nature of syndrome differentiation and treatment impact the standardization and reliability of information of four examinations and syndrome differentiation,which in turn restricts the ability of TCM to enhance its diagnostic and therapeutic capabilities using digital technologies.One key approach to achieving standardization and reliability of information is to collect diagnostic data of four examinations using objective methods and verify syndrome differentiation information through efficacy evaluation.Due to the complexity of syndrome differentiation,selecting diseases that exemplify the advantages of TCM syndrome differentiation and focusing on specific syndromes that are easy for artificial intelligence(AI) to identify are essential steps.This approach is expected to help build digital research framework for TCM syndrome differentiation,facilitating the integration of AI and modern digital methods into TCM practice.

    参考文献
    相似文献
    引证文献
引用本文

高武霖,戴国华,赵晨,任丽丽,管慧,王世军.疗效导向下中医辨证论治数字化研究信息框架的构建[J].世界中医药,2024,(21).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-20
  • 出版日期:
文章二维码