病证结合诊断量表研制方法学及证候客观化研究路径探析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFC1712800,2021YFC1712803);北京中医药“十四五”重点专科项目(BJZKLC0004);中国中医科学院优秀青年科技人才培养专项(ZZ15-YQ-028)


Methodology for Developing a Diagnosis Scale Combining Disease and Syndrome and Research Path for Syndrome Objectification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    中医证候客观化研究历来是中医药现代化研究发展过程中的热点和难点,并逐步成为“病证结合”研究思路下的重要分支。近年来,中医药领域已经按照量表学的研究思路、方法与技巧,形成了相对成熟的方法学体系,其关键环节主要包括条目池构建、条目筛选、条目赋权、诊断阈值确定、量表评价及量表验证与应用。从证候客观化发展路径来看,未来中医证候客观化研究应是在人工智能驱动下,跨维度信息的融合分析。将中医最具优势的宏观辨证体系与现代系统生物学以分子标志物为基础的微观辨证相结合,才能更全面系统地揭示中医证候的本质,进而为证候客观化、规范化诊断探索适宜的路径与方法。

    Abstract:

    The objectification of traditional Chinese medicine(TCM) syndromes has long been a key focus and challenge in the modernization of TCM research,gradually evolving into an important branch under the research paradigm of “combination of disease and syndrome”.In recent years,the TCM field has developed a relatively mature methodological system based on the principles,methods,and techniques of psychometrics.The critical steps mainly include the construction of an item pool,item selection,item weighting,determination of diagnostic thresholds,scale evaluation,and scale validation and application.From the perspective of development pathways for syndrome objectification,future research should be driven by artificial intelligence and focus on integrative analysis across multiple dimensions of information.Only by combining TCM's macro-level syndrome differentiation system with the micro-level syndrome differentiation approach of modern systems biology-centered on molecular biomarkers-can the essence of TCM syndromes be more comprehensively and systematically revealed,thereby exploring suitable approaches and methods for objective and standardized syndrome diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

金子开,芦佳劲,冯天笑,任嘉慧,章轶立,许爱丽,魏戌.病证结合诊断量表研制方法学及证候客观化研究路径探析[J].世界中医药,2025,(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期:
文章二维码